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1. INTRODUCTION

It is well known that although the collection Rn of all rational functions
rn= Pn/q,,, where Pn and qn are in the collection 7r. n of all polynomials of
degree n, is a much larger class than 7r. n , it does not improve the orders of
approximation in general. For instance, the approximation order of the
class Lip IX, 0 < IX:;;; 1, from both R n and 7r. n is O(n -"). ~o, why do we study
rational approximation when it is so much easier to obtain polynomial
approximants? There are at least two very good reasons. First, certain
physical models are described by rational functions. An important example
is the realization of a digital filter. While polynomials give only finite
impulse responses, the transfer function of a digital filter described by a
rational function is recursive, and with the feedback parameters, yields
infinite responses. The second reason is more familiar to the approximation
theorist, namely: while best approximation from 7r. n is saturated, this is
certainly not the case in approximation by rational functions. The most
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famous example is the one given by Newman [6] where uniform
approximation of Ixl on [-1, 1] from Rn was considered. Although the
order of approximation from 7r n is only O(n- 1

), it is O(e-'/';;) from R/,,
which is a very substantial improvement. Newman's work has generated
much interest in approximating piecewise smooth functions by rational
functions in the late sixties and early seventies (cf. [1, 4, 5, 8, 9], for
instance). In digital filter theory, the given ideal amplitude filter charac
teristic is also a piecewise linear function and it must be realized by means
of a rational function. Judging from the previous work on rational
approximation in recursive digital filter design (cr. [2, 3], for example), we
believe that rational approximation with some suitable weight functions
improve the filter performance. This motivates our research in charac
terization of weights in weighted rational approximation of piecewise
smooth functions, and in particular, piecewise analytic functions.

To facilitate our discussion, we need the following notation and
definitions. Let A: 0 = X o < X I < ... < x m < x m + 1= 1 be a partition of the
interval [0, 1]. For convenience, we will also use A to denote the set
{x I' ... , x",} of interior partition points. Denote by A(A) the collection of
all complex-valued continuous functions on [0, 1] whose restrictions on
each Ii = [xi' X j + I] are analytic on Ij , j = 0, ..., m, and by CS(A), the collec
tion of those whose restrictions on each I j belong to C(lj), the class of
functions with sth order continuous derivatives on I

J
, j = 0, ..., m. Let It' be

an arbitrary weight function; 0 < w(x) < 00 for almost all x on [0, 1]. For
any measurable function I defined on [0, 1], we will use the notation

and

{
{Jb I/(x)IP w(x) dx} lip

1I/IILp(w)= .
ess supo,,;;.,,;; I Ij(x)1 w(x)

if 0 < p < 00,

if p = CfJ

O<p~ 00.

Of course, if 1~ P ~ 00, 11·IILp(w) defines a norm for the space Lp(w). To be
more precise, we let Rn[a, b] denote the collection of all rational functions
Pn/qn where Pn are in 7r n and are relatively prime with qn(x) #0 for aU x in
[a, b]. In addition, set Rn= Rn[O, 1] and R = Un Rn- The "distance" of f
from Rn will be denoted by

en(f)Lp(W) = inf{ III - rnil Lp(w): rnE Rn},

where °< P ~ 00, and for any weight function l1.! on [0, 1], set

Up(W)={XE[0,1J:f w(t)dt=oo, for all o>o}
[x-b,x+b]n[O,I] .J
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if 0 < p < 00, and
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Ux (W)={xE[O,l]: esssup w(t)=oo, for all b>O}.
[x-b.x+b]n [0,1]

For any sets

and ./It = {JlI, ..., Jlk}'

where O~OI< ... <Ok~l and JlI, ...,Jlk>O, denote by Wp(e,Jt),
0< p ~ 00, the collection of all weight functions won [0, 1] that satisfy the
following conditions:

(i) Up(w) = e and

(ii) n;~II·-Osl"'ELp(w).

For any constant B> 1, let bn=b"(B)=B-,,n, and for any given weight
function w in Wp( e, ,/1{) and a small 15 > 0, write

6";;:-s(B) = bn Ilx [e, - b,e, - bn ] II Lp(w) + II ( . - Os) X[e, - bn, e,] ( . )11 Lp(w)'

6" ;;)B) = bnllx[e, H n,e,+ b] II Lp(w) + II ( . - Os) X[e" e,+ bn]( . )11 Lp(w)'

and

6",,(B) = L min(6"'-;:-s(B), 6",~s(B»,
es E8n<1

where, and throughout, as usual, XJ denotes the characteristic function of
the set J and an empty sum is considered to be zero.

Our main result in this paper is the following:

THEOREM 1. Let 0 < p ~ 00. Then a necessary and sufficient condition for
en(fhp(w) --+ 0, as n --+ 00, where f is an arbitrary function in A(L1 )\R, is that
there exist e and vlt such that WE Wp(e, vlt) and if e " L1 # rjJ, then to each
Os E e " L1, it follows that

(a)

or

,1im
o

+ 11(· - Os) X[e" e,+b] (. )11 Lp(w) = O.
~~
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Furthermore, if It' E Wp ( e, ~/t) for some e and vi!, then there exist constants
A and B, with both A> 1 and B> 1, such that

(I)

for any f in A(.d).

It is well known (cf. [10,11]) that if Ii'= 1, then e,,(f)Lp(ll=O(e- A
,/")

for any f in A(.d). Hence, it would be of some interest to characterize the
weight functions Ii' for which

(2 )

for some A> 0 and any fin A(.d). Our result in this direction can be stated
as follows.

THEOREM 2. If corresponding to every 8s EenLl, we have J1s< 1, then
there is a A> 0 such that for any 0 < p ~ 00 and any WE Wp ( e, J(), the
estimate in (2) holds for all f in A(.d).

On the other hand, if there is a 8so E e n.d such that the corresponding Ilso
is at least 1, then to any positive A., there exists a Ii' in w,,:ca, .lt), satisfying

(a) and (~), and an fEA(Ll) so that the sequence {e)"ne,,(j)Ly(WI} is
unbounded.

2. PRELIMINARY RESULTS

We need several lemmas. The first one is a result of Newman [6].

LEMMA 1. Let 1] = exp( -1/~) and p(x) = IlZ:6 (x + 11 k
). Then

I
P( -Xli n-- ~1]

p(x)

for 1]"~X~ 1.

The second result we need is the following.

LEMMA 2. Let ~1" ..,~qE[-I,O)u(O,IJ, /1>0 and J1}>O, }=I, ...,q.
Then for any constants 15, B, C, c, and cI' ... , cq satisfying

1 < B[!'] + 1 < e, C> 1, and e >0,
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there exist rational functions r"ERmJ -1, 1J, where m,,=n+O(~), such
that

0(1) for XE [-1]", I]"J,

o ((B[.u; +)~;;) ~9o Ix- ~j-8jB-fil.u}Ix- 8B- fi l.u

for XE [1]", 1J,

Isgnx-rn(x)I= O((B[.u;+I)fi) n IX-~j-8jB-v';;;I.ujlx-8B-fil.u
~}<o

for xE[-l,-I]"J,

c q -
O(C-'':'') n Ix- ~j- 8jB-~"I.uj

j= 1

for <5 < Ixl < 1,

where I] = e _n-
12

and the "0" terms are independent of x.

Proof We define our r" by

where

P1(x)= n (x+l]k)I+[lnC/(ln6)(ln(I-8)J,

O,,;;k,,;; (21n(lj6) + I) fi

P2(x)= n (X+l]k),
(2In(ij8) + I) y-';; <k <"

and

q ~ ~

P
3
(x)= n (x+ l~j+8jB-.,j"I)[.u}J+I(x+8B-,j,,)[.uJ+I.

j~1

It is clear that r"ERmn where mn=n+O(~). To verify the other required
properties, we note that since both sgn(x) and rn(x) are odd functions of x,
it is sufficient to consider 0 < x < 1. In the following estimates, n is always
assumed to be sufficiently large.

For O<x<l]n, since both [P1(X)P2(X)P3(x)J and [P1(-X)P 2(-x)
x P3( -x)J are positive, we actually have Ir,,(x)1 < 1.
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Next, let r(:::; x:::; 1. Then
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where K n = max{ IP 3(X)I: 0:::; x:::; 1} and

Since r(:::; x ~ 1, we have, from Lemma 1, that

1 n-Ilx_r/Jj 1

lP{x):::; 1]0 X+l/ J (sB-'/;;)[Il]+ln q Il.+s.B-,:nl[llj]+l
J- .1= 1 "/ J

1 -
:< (B[Il] + lie)' n (41
""s[Il]+lnJ=11(1/2)~JI[llj]+1 I'

so that the estimate for x E [1'7", 1] is established.
Finally, let J ~ x:::; 1. Then k o can be chosen, depending on x, such that

'lko + I:::; x:::; IJko• But independent of x, we have ko ~ [vr,; In( lit)]. Thus, it
follows that

I
x - nk I[ln C:'l!nblllnO-b))) + 1

=0(1) n --'k

ko + 1 "" k "" (2 InO;'b) + 1) v'~ X + 11

=0(1) n
ko + 1 "" k "" (2 In( lib) + 1) v n

= O( 1)( 1_ J ),';; InO:b)! [In C(ln b)(ln( 1 - 6))) + I J

Hence, by using (3) and (4), we have verified the estimate for (j ~ x ~ 1.

Remark 1. Lemma 2 holds if B = 1 and ~j + 5j # 0, j = 1, ..., q.

The following result of Bernstein is well known.

64-0 5..\.2-5
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LEMMA 3. Let f be analytic on [a, b]. Then there exists a sequence of
polynomials Pn in 1rn such that

for some A> O.

The key lemma in this paper is the following result.

LEMMA 4. Let (9= {O/> ...,Od, ./!f={/ll, ...,/ld, and J={X I,X2} be
given. If II' E Wp ( (9, ./It) and

f(x) = X[Q,X2](X)(X - x d(x - X2) fl(X),

(5)

for some constants A I > 1 and B I > 1.

Proof Choose a sufficiently small b > 0 so that fl is analytic on
[x1- 15, X 2 + b] and Os ¢ [x1- 15, x d U (x 2 , X2 + b], s = 1, ..., k. Construct a
polynomial Po of degree <Le,E[x l,X2]([/lS] + 1) such that

Po(:()-ft(x)= TI (x-O,)[!'j]+1 g(x),
OsE [Xl.X2]

where g is also analytic on [xl-b, x 2 +r5]. By Lemma 3, there is a

polynomial PI of degree K[fi] - Ls([J1s] + 1) such that

Ig(x) - PI(x)1 = O(e- vIn )

uniformly on [x1- b, X 2 + b]. Set

P2(X)=PO(X)- TI (X-O,)[/l,] + I PI(X).
OrE [:Q,X2]

Then P2 is a polynomial of degree K[';;;] and satisfies, uniformly on
[xt-b, x 2 +r5],

h(X) - fl(x) = O(e-'/;;) TI Ix - 0sl!"·
8s E ['("[,X2]

(6)

First, let us assume that en J = rjJ. Then by Remark 1, we see that there
exists a rational function rn of degree 2n + 0(';;;) such that
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\

0(1 )~or k x E [XI -11", X; + 1]"] U [X2 - rl", x 2 +1]"],

O(e-"I') n Ix - I1Y'
s= 1

!r,,(x)-X[xP2]1=· for x¢[x l -11",X1+I(]u[x1 -r(,x2+rl"]'

IO(C-v/;;-) fI Ix-11
5

11'·

fors=_~E [xl-b, X2+<5].

Since there is some A' > 0 such that

uniformly on [0, 1], we have, by setting C = e A + \

f(x) = X[X'.<2](X)(X - xd(x - x 2 )(fdx) - P2(X))

+ X[XI.X2](X)(X - x I)(X - x 2 ) P2(X)

=O(e-"';;-) nix - I1J!"s + rn(x)(x - X1)(X - X2) P2(X).

This implies that

emJf)LrCu') ~ Ilf( .)- rn ( • )( • - x d( . - x 2) P2(- )11 Lr(h)

=O(e-';;) II n I· - I1 s lll. II . = O(e- v
;;-).

5 I Lr(w)

Also, since mIl = 2n + O(~), we have

(f) O( - '";;2) O( vn'·4) O( - .';;:3,ell LrlWI = e ,"' L\. = e" J.

Now suppose that X J = I1sD Ee. Set x' = Xl - 2B-v';;, where

If n is large enough, then 11 5 ¢ [x', XI), S = 1, """, k, and an application of (6)
yields

k

!(x)=O(e"';;-) n Ix-l1s/lls+ X[X'.Xl](X)(X-X 1)(X-X2)P2(X)
5=1

_ k

:=O(e-"") n Ix-l1sllls+J1 -J2 _

s = 1

(7)
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It is easy to see that

IIJ111 Lp(w) :::;; C III· - x II X [Xl- lS-",,,";;,Xl - s-.j;;] ( . )11 Lp(w)

+ C III· - x II X[Xl- S-"''';;,Xl] ( . )11 Lp(w) :::;; 0(1) C;'so(B). (8)

By Lemma 2, there exists a rational function r" of degree 2n + O(j;;)
such that

Ix [X',X2](X) - r,,(x)1

\

O( 1) for x E [x' - 1]", x' + '1"] U [Xl - 1]", Xl + I]n],

, k

O(B[!"o]+ lie )",'" fl Ix - Bsl!"
s= 1

= ' for x E [x' + 1]", Xl - '1"] U [0, x' - 1]"] U [Xl + '1", 1],
_ k

O(C-v
/
,,) fllx-Bsl!"

s~1

Thus, if we write

J I = (X[X',X2](X) - rn(x))(x - x d(x - Xl) Pl(X)

+ (x-xd(x-xl ) Pl(X) r,,(x)

:= J[ + r:(x),

then

(9)

IIJt X[x' - 'I", x' + 'I"] II Lp(w) = O( 1) II (. - X I) X[x' - '1", x' + '1"]( • )11 Lp(w)

= O(B-.fi"z 11X[~I- J,<i - s-.fi"z] II Lp(W») = O(C;'so(B).

By setting C=exp(A' + 1), it follows from (7), (8), and (9), that

11/ - r*11 = O(e- fi )+ O(B[!"o] + tle)fi + O(C- (B))n Lp(w) IZ.SO '

where r,~ is a rational function of degree 2n + O(j;;). By setting

and

we obtain

e,,(f)Lp(w) = O(Ai.j;;) + O(C;'so(Bd).

Similarly, replacing C;'so(Bd by C,,~so(Bd, we also obtain

en(f)Lp(w) = O(Ai";;;) + O(C;::so(Bd).

Thus we have established the lemma for the special case en L1 = r/J.
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If X 2 =e so E(9nLl, then a similar estimate also gives (5).
Now, suppose that both XI = eSt and X 2 = Os, belong to the set e. Set

where

and
-

x"=x2 -2B-"n,

For all sufficiently large n, we have es¢ [x', Xl) U [x", X 2 ), S = 1, ... , k. By
(6), we see that

~ k

!(x)=O(e-"n) Illx-es l J1'+x[x',x.,](x)(x-xd(x-x2)P2(x)
s = 1

k

:=O(e-"/;:;) Il \x-es\J1'+KI -K2 -K3 •

, ~ 1

Therefore. we have

and

Write

X[x',x,,](x) =! {sgn(x - x') - sgn(x- x")}.

(0)

(11 )

02 )

By Lemma 2, there are rational functions 'II and if! of degree n +O(~)
such that

0(1) for \x-x'\:(;tJ",

\ O(B[·"] + '/dv~ ,I], jx - 0,1"'

l'n(x)-sgn(x-x')1 =, for Ix-x'I ~tJn and xE [0,1],

s~l

for Ix-x'I~(jandxE[O,l],
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and

Set
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. 0(1) for I: ~ x" I ::;;, Yfn,

0(B[/l'2] + Ile)Y'" n Ix- 8sl'"'

If,,(x)-sgn(x-x")1 =. for Ixs~~"1 ~Yfn and XE [0,1],

._ k

O(C-,in) n Ix-8s//l'
s~ I

for Ix-x"/ ~b and XE [0,1].

r,~(x) = Hrn(x) - f,,(x))(x - x d(x - x 2 ) pAx).

Then by (10), (11), and (12), we have

Ilf - r,;11 Lp(w) = O(e-~-;;) + O(B[/lsl] + lie )"r,; + O(B[/lsz] + Ile)vIn

+ O(tS';;'sl(B)) + 0(tS';;'s2(B)),

and this, in turn, yields

for some AI> 1 and B 1 > 1. Similarly, we have

e,,(f)Lp(W) = O(A,Y';;) + O(tS';;'sJBd + tS':sz(BI )),

en(f)Lp('d = O(A,vr,;) + O(tS':sl(Bd + tS',tsz(Bd),

and

en(f)Lp(w) = O(A,vIn) + O(tS':sJBd + tS';;'sz(Bd).

Hence, combining these estimates, we obtain (5). This completes the proof
of Lemma 4.

Remark 2. If x1= 0 or X 2 = 1, then the conclusion in Lemma 4 also
holds.

We also need the following lemma.

LEMMA 5. If 0 < b < A, then
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This result is a simple consequence of the following estimation derived
by Goncar [5]:

. f I ( -) II ( 1 '2 1 1\In Isgnx-rnx Lx[~l._b]u[b.l]~expt-1!nl n-::-l·
'pER" \ OJ

3. PROOF OF THEOREM 1

We are now ready to prove the first theorem. To prove the necessity
direction, let r" E R such that

(14 )

If Up(w) were an infinite set, then we always have

for any r", which contradicts with (14). Let Up(Il,)=e={e 1 , ••• ,ed and
set 15=-j:min1O;;:jo;;:m_118j-8j+11. We first observe that for every s,
s=l, ...,k, there is a positive {Is such that 1·-8s l

ll'X[e,-o.e,+o]r.[0,1](·)

E L p ( w). Indeed, if for some So, 1~ So ~ k, we have

lvl = 1,2, ... ,

and for any IEA(Ll)\R we have e,,(f)Lp(I<j-> 0, then there exist r"ER such
that

II (f - r,,) X[e,o- b.e,o + b] n [0.1] II Lp(w) ~ III - r n II L r (,,) ->°
so that, since M and 15 are arbitrary, we see that

and this implies that 1= rn on some fixed interval. As a consequence,
r", = rn for all m, and this yields 1== rnE R, which is a contradiction.

Suppose that for X j =8'oEL'1ne both (a) and W) do not hold. We first
consider the case °< P < 00. Let 1(·) = I. - 8so I. If for some sequence
{r,,} c R, we have Ilrn - III LvlW) -> 0, then rn must be of the form

(
Il ) Pn_I(X)

rnx)=(x-u so ( ,
q" x)

where P" _ I and q" are polynomials of degrees n - 1 and 11, respectively.
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Thus, for any small b > 0,
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Since both (a) and (~) do not hold, we have

f
O'O fo<Q+ b

,Ix - Bsa IP w(x) dx = 00 and Ix - Bsa IP w(x) dx = 00.
850 - 0 8 s0

(15 )

(16)

From (15) and (16), it follows that there are two sequences at! Bsa and
{JriBsa such that

This implies that

(18 )

which is not possible. Hence, for 0 < P < 00, (a) or (~) must hold.
Next consider p = 00 and again assume that both (a) and (~) do not

hold. Then there exists a positive number a such that for any A> 0 the
measures of the sets E;-: = {XE [Bsa - A, Bsa ]: Ix- Bsal w(x) > a} and Et =
{xE[Bsa,Bsa+A]: Ix-Bsal w(x»a} are positive. If en(f)Lp(w)--+O, then
there exist Pn-l and qn such that for all large n,

Hence, there exist two sequences of numbers at! Bsa and {Jt i Bsa such that
(18) holds, and this is again impossible.

We now consider the sufficiency direction. Since Cn(B) --+ 0 when one of
the conditions (a) or (~) is satisfied, the sufficiency direction follows from
the second part of the theorem, which we are going to establish. That is, we
must show that there exist A> 1 and B> 1, such that
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For every f E A(Ll) there is a polynomial Po of degree m such that

m

f(x) - Po(x) = I Xlr~)(x - .x)(x - X j + 1) gix )
j~O

m

:= I fj(x),
j~O

193

where gj is analytic on I j , j = 0, ..., m. By Lemma 4 and Remark 2, we see
that there exist constants A j > 1 and Bj > 1, such that

j= 1, ..., m.

Setting A = min; Aj and B = minj Bj completes the proof of the theorem.

4. PROOF OF THEOREM 2

If corresponding to each 8, E e (\ Ll we have fl., < 1, then

tC± (B) = O(B- .... ';,)
n,s S

for some B, > 1. Hence, by (1) we obtain

e,,(f)Lp(W' = O(A _,-I;;) + O(tCAB)) = O(e-Av';,),

where A=mine,Eer,A {lnA,lnBs }' This completes the proof of the first
half of the theorem.

To verify the second half of the theorem, let us consider the case where
Ll = e = {!} and j{ = {Ao} with Ao ?: 1. Let A>°be arbitrarily given and
we now construct_our weight function IV as follows.

Let Gn ?: e -/.y/n such that Gl?: G2?: ..• and Ell ~ 0, and define
bj = b;_ l/eJ/2, j = 1, 2, ..., with bo =~. Set

and

Then our weight function IV is defined by
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It is clear that WE W;n( e, ~f!). Let

Then if

II(ri + 1 - f)wlk,o[o,I] < 00,

r j + 1 must be of the form

( 1) pix)
rj + I(X) = x--2 ( )'

qj+ 1 X

so that Lemma 5 gives

II(rj + 1 - f)wIILwCo,I] ~~ II..J!.L- sgn (. --2
1
) II

q;+ 1 LdHJ)

~~ exp( _n2(j + 1)/2 In(J/Jj + I))
r:;- _,,2

=y Cj+ 1 e .

Hence, we have

This completes the proof of the theorem.

5. ApPROXIMATION OF PIECEWISE SMOOTH FUNCTIONS

By modifying the proofs and constructions in the above discussions, we
can also establish analogous results for the class CS(LI). We state these
results without giving the details in the following.

THEOREM 3. Let 0 < p :::; 00 and s be a positive integer. Then for any fin
CS(LI )\R, a necessary and sufficient condition for

en(f)Lp(w) - 0

is that the conditions of Theorem 1 are satisfied and Ilj:::; s for all j = 1, , k.
Furthermore, if w E Wp ( e, utI) for some e and vlt with Ilj:::; s, j = 1, , k,

then there exists a constant B> 1 such that
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where f i denotes the restriction off on I
J

and wi (fj, l/n)p the Lp-modulus of
continuity of f.

THEOREM 4. Let 0 < p ~ CIJ and s be a positIVe integer. Suppose that
WE W p(e, 011) where Ilj ~ s for all j = 1, ... , k. If to every ei E e II ,1, the
corresponding Ili is less than 1, then

for each f E CS (,1).
If there is some (Jio E e II ,1 with the corresponding Ilio?: 1, then for any

arbitrary sequence 6" 10, there exists a weight function WE W cc( e, .lit),
satisfying (a) and W) whenever e II LI -=F r/J, and an f E CS(LI) such that

1
- e,,(f)L (w) ~ ctJ
6 p

"as n -+ ctJ.

Of course the second half of Theorem 4 follows from the proof of
Theorem 2 with the same function f
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